The moduli space of S1-type zero loci for Z/2-harmonic spinors in dimension 3

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Let M be a compact oriented 3-dimensional smooth manifold. In this paper, we construct a moduli space consisting of pairs (Σ, ψ) where Σ is a C1-embedding simple closed curve in M, ψ is a Z/2harmonic spinor vanishing only on Σ, and ∥ψ∥L21 ≠ 0. We prove that when Σ is C2, a neighborhood of (Σ, ψ) in the moduli space can be parametrized by the space of Riemannian metrics on M locally as the kernel of a Fredholm operator.

原文English
頁(從 - 到)119-242
頁數124
期刊Communications in Analysis and Geometry
31
發行號1
DOIs
出版狀態Published - 2023 9月 21

All Science Journal Classification (ASJC) codes

  • 分析
  • 統計與概率
  • 幾何和拓撲
  • 統計、概率和不確定性

指紋

深入研究「The moduli space of S1-type zero loci for Z/2-harmonic spinors in dimension 3」主題。共同形成了獨特的指紋。

引用此