The MuTube Dataset for Music Listening History Retrieval and Recommendation System

Yi Chen Wang, Pei Lin Yang, Sok-Ian Sou, Hsun Ping Hsieh

研究成果: Conference contribution

摘要

Recommendation systems are widely used in music streaming services. This paper presents a system to collect user's music preference and music textual features in YouTube as well as to provide music recommendations based on collaborative filtering. As cold start and data sparsity are two severe issues in collaborative filtering, additional features for the item are necessary. We propose a method to aggregate both implicit feedback and textual features collected from YouTube to improve the recommendation performance. Experiment results indicate that the recommendation playlists generated by this system both match individual's and group preference.

原文English
主出版物標題Proceedings - 2020 International Computer Symposium, ICS 2020
發行者Institute of Electrical and Electronics Engineers Inc.
頁面55-60
頁數6
ISBN(電子)9781728192550
DOIs
出版狀態Published - 2020 十二月
事件2020 International Computer Symposium, ICS 2020 - Tainan, Taiwan
持續時間: 2020 十二月 172020 十二月 19

出版系列

名字Proceedings - 2020 International Computer Symposium, ICS 2020

Conference

Conference2020 International Computer Symposium, ICS 2020
國家/地區Taiwan
城市Tainan
期間20-12-1720-12-19

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 電腦網路與通信
  • 電腦科學應用
  • 資訊系統
  • 資訊系統與管理
  • 計算數學

指紋

深入研究「The MuTube Dataset for Music Listening History Retrieval and Recommendation System」主題。共同形成了獨特的指紋。

引用此