The para-substituent effect and pH-dependence of the organometallic Baeyer-Villiger oxidation of rhenium-carbon bonds

Mu Jeng Cheng, Steven M. Bischof, Robert J. Nielsen, William A. Goddard, T. Brent Gunnoe, Roy A. Periana

研究成果: Article

8 引文 斯高帕斯(Scopus)

摘要

We studied the Baeyer-Villiger (BV) type oxidation of phenylrhenium trioxide (PTO) by H 2O 2 in the aqueous phase using Quantum Mechanics (density functional theory with the M06 functional) focusing on how the solution pH and the para-substituent affect the Gibbs free energy surfaces. For both PTO and MTO (methylrhenium trioxide) cases, we find that for pH > 1 the BV pathway having OH - as the leaving group is lower in energy than the one involving simultaneous protonation of hydroxide. We also find that during this organometallic BV oxidation, the migrating phenyl is a nucleophile so that substituting functional groups in the para-position of phenyl with increased electron-donating character lowers the migration barrier, just as in organic BV reactions. However, this substituent effect also pushes electron density to Re, impeding HOO - coordination and slowing down the reaction. This is in direct contrast to the organic analog, in which para-substitution has an insignificant influence on 1,2-addition of peracids. Due to the competition of the two opposing effects and the dependence of the resting state on pH and concentration, the reaction rate of the organometallic BV oxidation is surprisingly unaffected by para-substitution.

原文English
頁(從 - 到)3758-3763
頁數6
期刊Dalton Transactions
41
發行號13
DOIs
出版狀態Published - 2012 四月 7

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry

指紋 深入研究「The para-substituent effect and pH-dependence of the organometallic Baeyer-Villiger oxidation of rhenium-carbon bonds」主題。共同形成了獨特的指紋。

引用此