The potential risk factors relevant to lateral epicondylitis by wrist coupling posture

研究成果: Article

1 引文 (Scopus)

摘要

The use of awkward wrist postures and unskilled techniques might induce lateral epicondylitis. This study thus investigated the effects of wrist deviation combined with extension and movement velocity on the dynamic performances of the wrist muscles during the coupling posture via a custom-made bi-planar isokinetic dynamometer. Thirty subjects were recruited to perform the isokinetic testing. We measured the muscle strengths and activities for the wrist extensors and flexors during concentric and eccentric contractions at three movement velocities, 30°s-1, 90°s-1, and 180°s-1, combined with three wrist postures, neutral position (NP), radial deviation (RD), and ulnar deviation (UD). The root mean square (RMS) of the electromyographic signal in the extensor digitorum communis (EDC), normalized peak torque of extensors, and ratio of normalized peak torque between wrist extensors and flexors, were all greater in the NP than RD and UD in both contractions. The ratio of RMS between EDC and flexor digitorum superficialis (FDS) had a significantly greater value in RD than UD during the concentric contraction. The EDC showed significantly higher activity at the fast velocity in both contractions. Nevertheless, a significantly higher RMS of the electromyographic signal between EDC and FDS and the ratio of strength between wrist extensors and flexors were found at slow velocity in both contractions. The wrist deviation combined with extension and movement velocity of the wrist joint should thus be considered as influential factors which might alter the dynamic performances, and may result in further injury of the elbow joint.

原文English
文章編號e0155379
期刊PloS one
11
發行號5
DOIs
出版狀態Published - 2016 五月 1

指紋

Tennis Elbow
posture
Wrist
Posture
risk factors
torque
joints (animal)
Muscle
Torque
dynamometers
muscle strength
elbows
Dynamometers
strength (mechanics)
Wrist Joint
Elbow Joint
Muscle Strength
muscles
Testing
Muscles

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

引用此文

@article{5752f57121b2489a9ae1c3f0a03529c8,
title = "The potential risk factors relevant to lateral epicondylitis by wrist coupling posture",
abstract = "The use of awkward wrist postures and unskilled techniques might induce lateral epicondylitis. This study thus investigated the effects of wrist deviation combined with extension and movement velocity on the dynamic performances of the wrist muscles during the coupling posture via a custom-made bi-planar isokinetic dynamometer. Thirty subjects were recruited to perform the isokinetic testing. We measured the muscle strengths and activities for the wrist extensors and flexors during concentric and eccentric contractions at three movement velocities, 30°s-1, 90°s-1, and 180°s-1, combined with three wrist postures, neutral position (NP), radial deviation (RD), and ulnar deviation (UD). The root mean square (RMS) of the electromyographic signal in the extensor digitorum communis (EDC), normalized peak torque of extensors, and ratio of normalized peak torque between wrist extensors and flexors, were all greater in the NP than RD and UD in both contractions. The ratio of RMS between EDC and flexor digitorum superficialis (FDS) had a significantly greater value in RD than UD during the concentric contraction. The EDC showed significantly higher activity at the fast velocity in both contractions. Nevertheless, a significantly higher RMS of the electromyographic signal between EDC and FDS and the ratio of strength between wrist extensors and flexors were found at slow velocity in both contractions. The wrist deviation combined with extension and movement velocity of the wrist joint should thus be considered as influential factors which might alter the dynamic performances, and may result in further injury of the elbow joint.",
author = "Lee, {Su Ya} and Chieh, {Hsiao Feng} and Lin, {Chien Ju} and Jou, {I. Ming} and Kuo, {Li Chieh} and Su, {Fong Chin}",
year = "2016",
month = "5",
day = "1",
doi = "10.1371/journal.pone.0155379",
language = "English",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "5",

}

TY - JOUR

T1 - The potential risk factors relevant to lateral epicondylitis by wrist coupling posture

AU - Lee, Su Ya

AU - Chieh, Hsiao Feng

AU - Lin, Chien Ju

AU - Jou, I. Ming

AU - Kuo, Li Chieh

AU - Su, Fong Chin

PY - 2016/5/1

Y1 - 2016/5/1

N2 - The use of awkward wrist postures and unskilled techniques might induce lateral epicondylitis. This study thus investigated the effects of wrist deviation combined with extension and movement velocity on the dynamic performances of the wrist muscles during the coupling posture via a custom-made bi-planar isokinetic dynamometer. Thirty subjects were recruited to perform the isokinetic testing. We measured the muscle strengths and activities for the wrist extensors and flexors during concentric and eccentric contractions at three movement velocities, 30°s-1, 90°s-1, and 180°s-1, combined with three wrist postures, neutral position (NP), radial deviation (RD), and ulnar deviation (UD). The root mean square (RMS) of the electromyographic signal in the extensor digitorum communis (EDC), normalized peak torque of extensors, and ratio of normalized peak torque between wrist extensors and flexors, were all greater in the NP than RD and UD in both contractions. The ratio of RMS between EDC and flexor digitorum superficialis (FDS) had a significantly greater value in RD than UD during the concentric contraction. The EDC showed significantly higher activity at the fast velocity in both contractions. Nevertheless, a significantly higher RMS of the electromyographic signal between EDC and FDS and the ratio of strength between wrist extensors and flexors were found at slow velocity in both contractions. The wrist deviation combined with extension and movement velocity of the wrist joint should thus be considered as influential factors which might alter the dynamic performances, and may result in further injury of the elbow joint.

AB - The use of awkward wrist postures and unskilled techniques might induce lateral epicondylitis. This study thus investigated the effects of wrist deviation combined with extension and movement velocity on the dynamic performances of the wrist muscles during the coupling posture via a custom-made bi-planar isokinetic dynamometer. Thirty subjects were recruited to perform the isokinetic testing. We measured the muscle strengths and activities for the wrist extensors and flexors during concentric and eccentric contractions at three movement velocities, 30°s-1, 90°s-1, and 180°s-1, combined with three wrist postures, neutral position (NP), radial deviation (RD), and ulnar deviation (UD). The root mean square (RMS) of the electromyographic signal in the extensor digitorum communis (EDC), normalized peak torque of extensors, and ratio of normalized peak torque between wrist extensors and flexors, were all greater in the NP than RD and UD in both contractions. The ratio of RMS between EDC and flexor digitorum superficialis (FDS) had a significantly greater value in RD than UD during the concentric contraction. The EDC showed significantly higher activity at the fast velocity in both contractions. Nevertheless, a significantly higher RMS of the electromyographic signal between EDC and FDS and the ratio of strength between wrist extensors and flexors were found at slow velocity in both contractions. The wrist deviation combined with extension and movement velocity of the wrist joint should thus be considered as influential factors which might alter the dynamic performances, and may result in further injury of the elbow joint.

UR - http://www.scopus.com/inward/record.url?scp=84969504795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84969504795&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0155379

DO - 10.1371/journal.pone.0155379

M3 - Article

C2 - 27171198

AN - SCOPUS:84969504795

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 5

M1 - e0155379

ER -