TY - JOUR
T1 - The roles of poly(ethylene oxide) electrode buffers in efficient polymer photovoltaics
AU - Jeng, Jun Yuan
AU - Lin, Ming Wei
AU - Hsu, Yao Jane
AU - Wen, Ten Chin
AU - Guo, Tzung Fang
PY - 2011/11
Y1 - 2011/11
N2 - The role of poly(ethylene oxide) polymer is investigated as an effective buffer with Al electrodes to markedly improve the electrode interface and enhance the open-circuit voltage ( V OC) and the power conversion efficiency ( PCE,η) of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM)-based bulk-heterojunction ( BHJ ) solar cells. A unique process is developed by thermally co-evaporating the poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2000) polymer with Al metal simultaneously at different ratios in vacuum (10 -6Torr) to prepare the electrode buffers. The instant formation of a carbide-like junction at the ethylene oxide/Al interface during the thermal evaporation is of essential importance to the extraction of electrons through the Al electrode. The performance of P3HT:PCBM-based solar cells can be optimized by modulating the co-evaporation ratios of the PEGDE polymer with Al metal due to the changes in the work functions of the electrodes. The V OC and η for devices fabricated with Al electrode are 0.44 V and 1.64%, respectively, and significantly improve to 0.58 V and 4.00% when applying the PEGDE:Al(2:1)/Al electrode. This research leads to a novel electrode design - free of salts, additives, complicated syntheses, and having tunable work function - for fabricating high-performance photovoltaic cells.
AB - The role of poly(ethylene oxide) polymer is investigated as an effective buffer with Al electrodes to markedly improve the electrode interface and enhance the open-circuit voltage ( V OC) and the power conversion efficiency ( PCE,η) of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM)-based bulk-heterojunction ( BHJ ) solar cells. A unique process is developed by thermally co-evaporating the poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2000) polymer with Al metal simultaneously at different ratios in vacuum (10 -6Torr) to prepare the electrode buffers. The instant formation of a carbide-like junction at the ethylene oxide/Al interface during the thermal evaporation is of essential importance to the extraction of electrons through the Al electrode. The performance of P3HT:PCBM-based solar cells can be optimized by modulating the co-evaporation ratios of the PEGDE polymer with Al metal due to the changes in the work functions of the electrodes. The V OC and η for devices fabricated with Al electrode are 0.44 V and 1.64%, respectively, and significantly improve to 0.58 V and 4.00% when applying the PEGDE:Al(2:1)/Al electrode. This research leads to a novel electrode design - free of salts, additives, complicated syntheses, and having tunable work function - for fabricating high-performance photovoltaic cells.
UR - http://www.scopus.com/inward/record.url?scp=84857786613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857786613&partnerID=8YFLogxK
U2 - 10.1002/aenm.201100314
DO - 10.1002/aenm.201100314
M3 - Article
AN - SCOPUS:84857786613
SN - 1614-6832
VL - 1
SP - 1192
EP - 1198
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 6
ER -