TY - JOUR
T1 - The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction
AU - Hsu, Chun Han
AU - Kuo, Ping Lin
PY - 2012/1/15
Y1 - 2012/1/15
N2 - An exceptionally durable and highly active Pt catalyst has been prepared by embedding Pt nanoparticles inside the pores of a nitrogen-doped porous carbon layer coated on carbon nanotubes (denoted as Pt@NC-CNT). The aforementioned material, under different carbonization temperatures, is characterized by transmission electron microscopy, N2 adsorption and desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. The maximum current density (Imax) during the methanol oxidation reaction (MOR) observed for Pt@NC-CNT (13.2 mA cm?1) is 20% higher than that of the commercial Pt/XC-72 (10.8 mA cm?1) catalyst. In the accelerated durability test, the Imax after 2000 cycles for Pt@NCCNT- 600 decreased from 13.2 to 6.9 mA cm?2 (48% decreased) compared with Pt/XC-72, which showed a decrease from 10.8 to 0.46 mA cm?2 (96% decreased). This indicates that the Pt@NC-CNT catalyst has extremely stable electrocatalytic activity for MOR owing to its unique structure, whereby Pt is protected by being embedded inside the pores of the nitrogen-doped carbon layer. Pt@NC-CNT's superior durability properties are further verified by observing the changes of the Pt particle sizes using TEM images before and after accelerated durability tests, as compared with Pt/XC-72.
AB - An exceptionally durable and highly active Pt catalyst has been prepared by embedding Pt nanoparticles inside the pores of a nitrogen-doped porous carbon layer coated on carbon nanotubes (denoted as Pt@NC-CNT). The aforementioned material, under different carbonization temperatures, is characterized by transmission electron microscopy, N2 adsorption and desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. The maximum current density (Imax) during the methanol oxidation reaction (MOR) observed for Pt@NC-CNT (13.2 mA cm?1) is 20% higher than that of the commercial Pt/XC-72 (10.8 mA cm?1) catalyst. In the accelerated durability test, the Imax after 2000 cycles for Pt@NCCNT- 600 decreased from 13.2 to 6.9 mA cm?2 (48% decreased) compared with Pt/XC-72, which showed a decrease from 10.8 to 0.46 mA cm?2 (96% decreased). This indicates that the Pt@NC-CNT catalyst has extremely stable electrocatalytic activity for MOR owing to its unique structure, whereby Pt is protected by being embedded inside the pores of the nitrogen-doped carbon layer. Pt@NC-CNT's superior durability properties are further verified by observing the changes of the Pt particle sizes using TEM images before and after accelerated durability tests, as compared with Pt/XC-72.
UR - http://www.scopus.com/inward/record.url?scp=80755172112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80755172112&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2011.09.020
DO - 10.1016/j.jpowsour.2011.09.020
M3 - Article
AN - SCOPUS:80755172112
VL - 198
SP - 90
EP - 94
JO - Journal of Power Sources
JF - Journal of Power Sources
SN - 0378-7753
ER -