Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance

Pai Chun Wei, Chien Neng Liao, Hsin Jay Wu, Dongwang Yang, Jian He, Gill V. Biesold-McGee, Shuang Liang, Wan Ting Yen, Xinfeng Tang, Jien Wei Yeh, Zhiqun Lin, Jr Hau He

研究成果: Review article同行評審

49 引文 斯高帕斯(Scopus)


Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV–VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.

期刊Advanced Materials
出版狀態Published - 2020 3月 1

All Science Journal Classification (ASJC) codes

  • 材料科學(全部)
  • 材料力學
  • 機械工業


深入研究「Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance」主題。共同形成了獨特的指紋。