TY - JOUR

T1 - Three-dimensional asymptotic nonlocal elasticity theory for the free vibration analysis of embedded single-walled carbon nanotubes

AU - Wu, Chih Ping

AU - Chen, Yen Jung

AU - Wang, Yung Ming

PY - 2020/7/1

Y1 - 2020/7/1

N2 - Within the framework of three-dimensional (3D) nonlocal elasticity theory, the authors develop an asymptotic theory to investigate the free vibration characteristics of simply supported, single-walled carbon nanotubes (SWCNTs) non-embedded or embedded in an elastic medium using the multiple time scale method. Eringen's nonlocal constitutive relations are adopted to account for the small length scale effect in the formulation. The interactions between the SWCNT and its surrounding medium are modeled as a two-parameter Pasternak foundation model. After performing a series of mathematical processes, including nondimensionalization, asymptotic expansion, and successive integration, etc., the authors obtain recurrent sets of motion equations for various order problems. The nonlocal classical shell theory (CST) is derived as a first-order approximation of the current 3D nonlocal elasticity problem, and the equations of motion for higher-order problems retain the same differential operators as those of the nonlocal CST, although with different nonhomogeneous terms. The current asymptotic solutions for the natural frequency parameters of non-embedded or embedded SWCNTs and their corresponding through-thickness modal stress and displacement component distributions are obtained to assess the accuracy of various nonlocal shell and beam theories available in the literature.

AB - Within the framework of three-dimensional (3D) nonlocal elasticity theory, the authors develop an asymptotic theory to investigate the free vibration characteristics of simply supported, single-walled carbon nanotubes (SWCNTs) non-embedded or embedded in an elastic medium using the multiple time scale method. Eringen's nonlocal constitutive relations are adopted to account for the small length scale effect in the formulation. The interactions between the SWCNT and its surrounding medium are modeled as a two-parameter Pasternak foundation model. After performing a series of mathematical processes, including nondimensionalization, asymptotic expansion, and successive integration, etc., the authors obtain recurrent sets of motion equations for various order problems. The nonlocal classical shell theory (CST) is derived as a first-order approximation of the current 3D nonlocal elasticity problem, and the equations of motion for higher-order problems retain the same differential operators as those of the nonlocal CST, although with different nonhomogeneous terms. The current asymptotic solutions for the natural frequency parameters of non-embedded or embedded SWCNTs and their corresponding through-thickness modal stress and displacement component distributions are obtained to assess the accuracy of various nonlocal shell and beam theories available in the literature.

UR - http://www.scopus.com/inward/record.url?scp=85082500674&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85082500674&partnerID=8YFLogxK

U2 - 10.1016/j.camwa.2020.03.006

DO - 10.1016/j.camwa.2020.03.006

M3 - Article

AN - SCOPUS:85082500674

VL - 80

SP - 161

EP - 182

JO - Computers and Mathematics with Applications

JF - Computers and Mathematics with Applications

SN - 0898-1221

IS - 1

ER -