Three-dimensional paddle shift modeling for IC packaging

Chien Chang Pei, Sheng-Jye Hwang

研究成果: Article同行評審

22 引文 斯高帕斯(Scopus)

摘要

The plastic packaging process for integrated circuits is subject to several fabrication defects. For packages containing leadframes, three major defects may occur in the molding process alone, namely, incomplete filling and void formation, wire sweep, and paddle shift. Paddle shift is the deflection of the leadframe pad and die. Excessive paddle shift reduces the encapsulation protection for the components and may result in failures due to excessive wire sweep. Computer-aided analysis is one of the tools that could be used to simulate and predict the occurrence of such molding-process-induced defects, even prior to the commencement of mass production of a component. This paper presents a methodology for computational modeling and prediction of paddle shift during the molding process. The methodology is based on modeling the flow of the polymer melt around the leadframe and paddle during the filling process, and extracting the pressure loading induced by the flow on the paddle. The pressure loading at different times during the filling process is then supplied to a three-dimensional, static, structural analysis module to determine the corresponding paddle deflections at those times. The paper outlines the procedures used to define the relevant geometries and to generate the meshes in the "fluid" and "structural" subdomains, and to ensure the compatibility of these meshes for the transfer of pressure loadings. Results are shown for a full paddle shift simulation. The effect on the overall model performance of different element types for the mold-filling analysis and the structural analysis is also investigated and discussed. In order to obtain more accurate results and in a shorter computational time for the combined (fluid and structural) paddle shift analysis, it was found that higher-order elements, such as hexahedra or prisms, are more suitable than tetrahedra.

原文English
頁(從 - 到)324-334
頁數11
期刊Journal of Electronic Packaging, Transactions of the ASME
127
發行號3
DOIs
出版狀態Published - 2005 九月 1

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 材料力學
  • 電腦科學應用
  • 電氣與電子工程

指紋

深入研究「Three-dimensional paddle shift modeling for IC packaging」主題。共同形成了獨特的指紋。

引用此