Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines

Fuhua Ma, Jeong Yeol Choi, Vigor Yang

研究成果: Article同行評審

69 引文 斯高帕斯(Scopus)

摘要

The modeling and simulation of the thrust chamber dynamics in an airbreathing pulse detonation engine (PDE) are conducted. The system under consideration includes a supersonic inlet, an air manifold, a valve, a single-tube combustor, and a convergent-divergent nozzle. The analysis accommodates the full conservation equations in two-dimensional coordinates and employs a chemical reaction scheme with a single-progress variable calibrated for a stoichiometric hydrogen/air mixture. The combustion and flow dynamics involved in typical PDE operations are carefully examined. In addition, a flowpath-based performance prediction model is established to estimate the theoretical limit of the engine propulsive performance. Various performance loss mechanisms, including the refilling process, nozzle flow expansion and divergence, and internal flow process are identified and quantified. The internal flow loss, which mainly arises from the shock waves within the chamber, was found to play a dominant role in degrading the PDE performance. The effects of engine operating parameters and nozzle configurations on the system dynamics are also studied in depth. Results indicate the existence of an optimum operating frequency for maximizing the performance margin. For a given cycle period and purge time, the performance increases with decreasing valve-closed time in most cases. On the other hand, a larger purge time decreases the specific thrust but increases the specific impulse for a given cycle period and valve-closed time. The nozzle throat area affects both the flow expansion process and chamber dynamics, thereby exerting a much more significant influence than the other nozzle geometrical parameters.

原文English
頁(從 - 到)512-526
頁數15
期刊Journal of Propulsion and Power
21
發行號3
DOIs
出版狀態Published - 2005

All Science Journal Classification (ASJC) codes

  • 航空工程
  • 燃料技術
  • 機械工業
  • 空間與行星科學

指紋

深入研究「Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines」主題。共同形成了獨特的指紋。

引用此