Time-delay control of magnetic levitated linear positioning system

J. H. Tarn, K. Y. Juang

研究成果: Conference article同行評審

2 引文 斯高帕斯(Scopus)


In this paper, a high accuracy linear positioning system with linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by boundary effect of magnet poles and utilized to power the linear motion. White the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force act on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and mathematical model is derived according to some assumptions, such as equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection' is also required. With above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodelled dynamics and disturbance then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

頁(從 - 到)1947-1951
期刊Proceedings of the American Control Conference
出版狀態Published - 1994 12月 1
事件Proceedings of the 1994 American Control Conference. Part 1 (of 3) - Baltimore, MD, USA
持續時間: 1994 6月 291994 7月 1

All Science Journal Classification (ASJC) codes

  • 電氣與電子工程


深入研究「Time-delay control of magnetic levitated linear positioning system」主題。共同形成了獨特的指紋。