Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger

Chih Hsing Liu, Fu Ming Chung, Yuan Ping Ho

研究成果: Article同行評審

15 引文 斯高帕斯(Scopus)

摘要

A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.

原文English
文章編號9425015
頁(從 - 到)1828-1836
頁數9
期刊IEEE/ASME Transactions on Mechatronics
26
發行號4
DOIs
出版狀態Published - 2021 8月

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 電腦科學應用
  • 電氣與電子工程

指紋

深入研究「Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger」主題。共同形成了獨特的指紋。

引用此