Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production

Yong Yang Gan, Hwai Chyuan Ong, Tau Chuan Ling, Wei Hsin Chen, Cheng Tung Chong

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)

摘要

Non-edible Jatropha seed used for biodiesel production has increased due to its high-oil contents in kernel and potential to reduce greenhouse gas emission. High demand for biodiesel generates a large volume of waste. In this study, de-oiled Jatropha seed kernel was torrefied at 200 °C, 250 °C and 300 °C, holding time of 15, 30, 45 and 60 min and particle sizes of 0.5–1.0 and 1.0–2.0 mm to produce solid fuel. Torrefaction performance was highly affected by torrefaction temperature compared with holding time. The enhancement factor of HHV increased up to 1.243 after torrefaction at 300 °C and 60 min with particle size of 0.5–1.0 mm. The large particle size reduces the diffusion rate of torrefaction vapour through internal pores, thereby producing high solid yield and low enhancement in HHV. The analysis of torrefaction severity index shows that HHV increase is highly dependent on the weight loss, thereby directly decreasing the total energy in biochar. Scanning electron microscopy image clearly illustrated that the microparticles on the surface were destroyed to increase the porous structure of the biochar with increasing torrefaction temperature. Severe torrefaction with particle size of 0.5–1.0 mm was an effective approach to increase the energy content of biochar.

原文English
頁(從 - 到)367-374
頁數8
期刊Energy
170
DOIs
出版狀態Published - 2019 三月 1

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建築與營造
  • 建模與模擬
  • 可再生能源、永續發展與環境
  • 燃料技術
  • 能源工程與電力技術
  • 污染
  • 能源(全部)
  • 機械工業
  • 工業與製造工程
  • 管理、監督、政策法律
  • 電氣與電子工程

指紋

深入研究「Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production」主題。共同形成了獨特的指紋。

引用此