Toward Stock Price Prediction using Deep Learning

Chun Hung Cho, Guan Yi Lee, Yueh Lin Tsai, Kun Chan Lan

研究成果: Conference contribution

6 引文 斯高帕斯(Scopus)

摘要

Three methods including LSTM, Seq2seq and WaveNet are implemented in this study. We compare the performance of different deep learning methods in predicting stock prices. We use the correlation between the predicted price and the actual price as the performance metric to evaluate the effectiveness of these methods.

原文English
主出版物標題UCC 2019 Companion - Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing
發行者Association for Computing Machinery, Inc
頁面133-135
頁數3
ISBN(電子)9781450370448
DOIs
出版狀態Published - 2019 12月 2
事件12th IEEE/ACM International Conference on Utility and Cloud Computing, UCC Companion 2019 - Auckland, New Zealand
持續時間: 2019 12月 22019 12月 5

出版系列

名字UCC 2019 Companion - Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing

Conference

Conference12th IEEE/ACM International Conference on Utility and Cloud Computing, UCC Companion 2019
國家/地區New Zealand
城市Auckland
期間19-12-0219-12-05

All Science Journal Classification (ASJC) codes

  • 電腦網路與通信
  • 硬體和架構

指紋

深入研究「Toward Stock Price Prediction using Deep Learning」主題。共同形成了獨特的指紋。

引用此