Trajectory Adjustments Underlying Task-Specific Intermittent Force Behaviors and Muscular Rhythms

Yi Ching Chen, Yen Ting Lin, Chien Ting Huang, Chia Li Shih, Zong Ru Yang, Ing Shiou Hwang

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)


Force intermittency is one of the major causes of motor variability. Focusing on the dynamics of force intermittency, this study was undertaken to investigate how force trajectory is fine-tuned for static and dynamic force-tracking of a comparable physical load. Twenty-two healthy adults performed two unilateral resistance protocols (static force-tracking at 75% maximal effort and dynamic force-tracking in the range of 50%-100% maximal effort) using the left hand. The electromyographic activity and force profile of the designated hand were monitored. Gripping force was off-line decomposed into a primary movement spectrally identical to the target motion and a force intermittency profile containing numerous force pulses. The results showed that dynamic force-tracking exhibited greater intermittency amplitude and force pulse but a smaller amplitude ratio of primary movement to force intermittency than static force-tracking. Multi-scale entropy analysis revealed that force intermittency during dynamic force-tracking was more complex on a low time scale but more regular on a high time scale than that of static force-tracking. Together with task-dependent force intermittency properties, dynamic force-tracking exhibited a smaller 8-12 Hz muscular oscillation but a more potentiated muscular oscillation at 35-50 Hz than static force-tracking. In conclusion, force intermittency reflects differing trajectory controls for static and dynamic force-tracking. The target goal of dynamic tracking is achieved through trajectory adjustments that are more intricate and more frequent than those of static tracking, pertaining to differing organizations and functioning of muscular oscillations in the alpha and gamma bands.

期刊PloS one
出版狀態Published - 2013 9月 30

All Science Journal Classification (ASJC) codes

  • 多學科


深入研究「Trajectory Adjustments Underlying Task-Specific Intermittent Force Behaviors and Muscular Rhythms」主題。共同形成了獨特的指紋。