Transcrystallization of PTFE fiber/PP composites - III. Effect of fiber pulling on the crystallization kinetics

Chi Wang, C. R. Liu

研究成果: Article同行評審

30 引文 斯高帕斯(Scopus)

摘要

The effect of shear rates on the transcrystallization of polypropylene (PP) on the polytetrafluoroethylene (PTFE) fibers has been quantitatively investigated using a polarized optical microscope equipped with a hot stage and a tensile testing machine. The PTFE fibers were pulled at different rates, from 0.17 to 8.33 μm/s, to induce a range of shear rates, about 0.02 to 1.16 1/s, in the PP melt adjacent to the fiber. The induction time, nucleation rate, and saturated nucleation density at the fiber surface were determined at various crystallization temperatures. It was found that both the nucleation rate and the saturated nucleation density increase with increasing shear rates. However, the induction time is significantly reduced. Based on the theory of heterogeneous nucleation, the interfacial free energy difference functions ΔσTCL of PP on PTFE fibers at different levels of shear rates were determined and compared with that obtained from crystallization under quiescent conditions. Results showed that the magnitude of ΔσTCL decreased to be about one-third of that for the quiescent crystallization, when a shear rate of 1.16 1/s was applied. The application of a shear stress to the supercooled PP melt by fiber pulling leads to enhance the development of transcrystallinity. Moreover, both the thickness and the crystal growth rate of transcrystalline layers were found to increase with the increasing rate of fiber pulling, especially at low crystallization temperatures where regime III prevails (see text). Surface morphology of PTFE fibers was revealed using a scanning electron microscope and an atomic force microscope. It is argued that the presence of fibrillar-type features at the fiber surface is the main factor responsible for the development of transcrystallinity.

原文English
頁(從 - 到)1361-1370
頁數10
期刊Journal of Polymer Science, Part B: Polymer Physics
36
發行號8
DOIs
出版狀態Published - 1998 一月 1

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Materials Chemistry

指紋 深入研究「Transcrystallization of PTFE fiber/PP composites - III. Effect of fiber pulling on the crystallization kinetics」主題。共同形成了獨特的指紋。

引用此