TY - JOUR
T1 - Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods
AU - Su, Yu Chi
AU - Ma, Chien Ching
N1 - Funding Information:
This work was financially supported by the National Science Council, Republic of China , through Grant No. NSC 98-2923-E-002-003-MY3 .
PY - 2012/5/1
Y1 - 2012/5/1
N2 - This study applies two analytical approaches, Laplace transform and normal mode methods, to investigate the dynamic transient response of a cantilever Timoshenko beam subjected to impact forces. Explicit solutions for the normal mode method and the Laplace transform method are presented. The Durbin method is used to perform the Laplace inverse transformation, and numerical results based on these two approaches are compared. The comparison indicates that the normal mode method is more efficient than the Laplace transform method in the transient response analysis of a cantilever Timoshenko beam, whereas the Laplace transform method is more appropriate than the normal mode method when analyzing the complicated multi-span Timoshenko beam. Furthermore, a three-dimensional finite element cantilever beam model is implemented. The results are compared with the transient responses for displacement, normal stress, shear stress, and the resonant frequencies of a Timoshenko beam and Bernoulli-Euler beam theories. The transient displacement response for a cantilever beam can be appropriately evaluated using the Timoshenko beam theory if the slender ratio is greater than 10 or using the Bernoulli-Euler beam theory if the slender ratio is greater than 100. Moreover, the resonant frequency of a cantilever beam can be accurately determined by the Timoshenko beam theory if the slender ratio is greater than 100 or by the Bernoulli-Euler beam theory if the slender ratio is greater than 400.
AB - This study applies two analytical approaches, Laplace transform and normal mode methods, to investigate the dynamic transient response of a cantilever Timoshenko beam subjected to impact forces. Explicit solutions for the normal mode method and the Laplace transform method are presented. The Durbin method is used to perform the Laplace inverse transformation, and numerical results based on these two approaches are compared. The comparison indicates that the normal mode method is more efficient than the Laplace transform method in the transient response analysis of a cantilever Timoshenko beam, whereas the Laplace transform method is more appropriate than the normal mode method when analyzing the complicated multi-span Timoshenko beam. Furthermore, a three-dimensional finite element cantilever beam model is implemented. The results are compared with the transient responses for displacement, normal stress, shear stress, and the resonant frequencies of a Timoshenko beam and Bernoulli-Euler beam theories. The transient displacement response for a cantilever beam can be appropriately evaluated using the Timoshenko beam theory if the slender ratio is greater than 10 or using the Bernoulli-Euler beam theory if the slender ratio is greater than 100. Moreover, the resonant frequency of a cantilever beam can be accurately determined by the Timoshenko beam theory if the slender ratio is greater than 100 or by the Bernoulli-Euler beam theory if the slender ratio is greater than 400.
UR - http://www.scopus.com/inward/record.url?scp=84858440468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858440468&partnerID=8YFLogxK
U2 - 10.1016/j.ijsolstr.2012.01.013
DO - 10.1016/j.ijsolstr.2012.01.013
M3 - Article
AN - SCOPUS:84858440468
VL - 49
SP - 1158
EP - 1176
JO - International Journal of Solids and Structures
JF - International Journal of Solids and Structures
SN - 0020-7683
IS - 9
ER -