Transplantation of viable mitochondria improves right ventricular performance and pulmonary artery remodeling in rats with pulmonary arterial hypertension

Chih Hsin Hsu, Jun Neng Roan, Shih Yuan Fang, Meng Hsuan Chiu, Tzu Ting Cheng, Chien Chi Huang, Ming Wei Lin, Chen Fuh Lam

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Objective: Because mitochondrial dysfunction is a key factor in the progression of pulmonary hypertension, this study tested the hypothesis that transplantation of exogenous viable mitochondria can reverse pulmonary artery remodeling and restore right ventricular performance in pulmonary hypertension. Methods: Pulmonary hypertension was induced by parenteral injection of monocrotaline (60 mg/kg) and creation of a left-to-right shunt aortocaval fistula in rats. Three weeks after creation of fistula, the animals were randomly assigned to receive intravenous delivery of placebo solution or allogeneic mitochondria once weekly for 3 consecutive weeks. Mitochondria (100 μg) were isolated from the freshly harvested soleus muscles of naïve rats. Transthoracic echocardiography was performed at 3 weeks after mitochondrial delivery. Results: Ex vivo heart-lung block images acquired by an IVIS Spectrum (PerkinElmer, Waltham, Mass) imaging system confirmed the enhancement of MitoTracker (Invitrogen, Carlsbad, Calif) fluorescence in the pulmonary arteries. Mitochondria transplantation significantly increased lung tissue adenosine triphosphate concentrations and improved right ventricular performance, as evidenced by a reduction in serum levels of B-type natriuretic peptide and ventricular diameter. Right ventricular mass and wall thickness were restored in the mitochondrial group. In the pulmonary arteries of rats that received mitochondrial treatment, vascular smooth muscle cells expressed higher levels of α-smooth muscle actin and smooth muscle myosin heavy chain II, indicating the maintenance of the nonproliferative, contractile phenotype. The hyper-reactivity of isolated pulmonary arteries to α-adrenergic stimulation was also attenuated after mitochondrial transplantation. Conclusions: Transplantation of viable mitochondria can restore the contractile phenotype and vasoreactivity of the pulmonary artery, thereby reducing the afterload and right ventricular remodeling in rats with established pulmonary hypertension. The improvement in overall right ventricular performance suggests that mitochondrial transplantation can be a revolutionary clinical therapeutic option for the management of pulmonary hypertension.

原文English
期刊Journal of Thoracic and Cardiovascular Surgery
DOIs
出版狀態Accepted/In press - 2020

All Science Journal Classification (ASJC) codes

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine

指紋 深入研究「Transplantation of viable mitochondria improves right ventricular performance and pulmonary artery remodeling in rats with pulmonary arterial hypertension」主題。共同形成了獨特的指紋。

引用此