Tri-Gate Ferroelectric FET Characterization and Modelling for Online Training of Neural Networks at Room Temperature and 233K

Sourav De, Md Aftab Baig, Bo Han Qiu, Darsen Lu, Po Jung Sung, Fu K. Hsueh, Yao Jen Lee, Chun Jung Su

研究成果: Conference contribution

3 引文 斯高帕斯(Scopus)

摘要

This paper reports detailed analysis on switching dynamics and device variability over a wide range of temperatures for deeply scaled (40nm gate length) tri-gate ferroelectric FETs with 10nm HZO fabricated using gate first process on SOI wafers. Our experimental results manifest, 99% ferroelectric switching at room temperature and at 233K. A memory window over 5V and strong gate length dependence of memory window is observed. Highly linear and symmetric multilevel switching characteristics makes our ferroelectric FETs suitable for neuromorphic applications, as demonstrated with neural network online training simulations.

原文English
主出版物標題2020 Device Research Conference, DRC 2020
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728170473
DOIs
出版狀態Published - 2020 六月
事件2020 Device Research Conference, DRC 2020 - Columbus, United States
持續時間: 2020 六月 212020 六月 24

出版系列

名字Device Research Conference - Conference Digest, DRC
2020-June
ISSN(列印)1548-3770

Conference

Conference2020 Device Research Conference, DRC 2020
國家/地區United States
城市Columbus
期間20-06-2120-06-24

All Science Journal Classification (ASJC) codes

  • 電氣與電子工程

指紋

深入研究「Tri-Gate Ferroelectric FET Characterization and Modelling for Online Training of Neural Networks at Room Temperature and 233K」主題。共同形成了獨特的指紋。

引用此