TY - JOUR
T1 - Turbulence effects on volatilization rates of liquids and solutes
AU - Lee, Jiunn Fwu
AU - Chao, Huan Ping
AU - Chiou, Cary T.
AU - Manes, Milton
PY - 2004/8/15
Y1 - 2004/8/15
N2 - Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ≅ kL, is also improved by using appropriate reference kL values.
AB - Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ≅ kL, is also improved by using appropriate reference kL values.
UR - http://www.scopus.com/inward/record.url?scp=4143056814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4143056814&partnerID=8YFLogxK
U2 - 10.1021/es0353964
DO - 10.1021/es0353964
M3 - Article
C2 - 15382860
AN - SCOPUS:4143056814
SN - 0013-936X
VL - 38
SP - 4327
EP - 4333
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 16
ER -