TY - JOUR
T1 - Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media
AU - Chou, Ying Nien
AU - Sun, Fang
AU - Hung, Hsiang Chieh
AU - Jain, Priyesh
AU - Sinclair, Andrew
AU - Zhang, Peng
AU - Bai, Tao
AU - Chang, Yung
AU - Wen, Ten Chin
AU - Yu, Qiuming
AU - Jiang, Shaoyi
N1 - Publisher Copyright:
© 2016 Acta Materialia Inc.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150 nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20 nm exhibited ultra-low fouling (<5 ng/cm2). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Statement of Significance In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5 ng/cm2 measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693 ng/cm2. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.
AB - For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150 nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20 nm exhibited ultra-low fouling (<5 ng/cm2). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Statement of Significance In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5 ng/cm2 measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693 ng/cm2. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.
UR - http://www.scopus.com/inward/record.url?scp=84963946834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84963946834&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2016.04.023
DO - 10.1016/j.actbio.2016.04.023
M3 - Article
C2 - 27090589
AN - SCOPUS:84963946834
SN - 1742-7061
VL - 40
SP - 31
EP - 37
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -