Unsupervised Post-Time Fake Social Message Detection with Recommendation-aware Representation Learning

Shao Ping Hsiao, Yu Che Tsai, Cheng Te Li

研究成果: Conference contribution

2 引文 斯高帕斯(Scopus)

摘要

This paper deals with a more realistic scenario of fake message detection on social media, i.e., unsupervised post-time detection. Given a source message, our goal is to determine whether it is fake without using labeled data and without requiring user interacted with the given message. We present a novel learning framework, Recommendation-aware Message Representation (RecMR), to achieve the goal. The key idea is to learn user preferences and have them encoded into the representation of the source message through jointly training the tasks of user recommendation and binary detection. Experiments conducted on two real Twitter datasets exhibit the promising performance of RecMR, and show the effectiveness of recommended users in unsupervised detection.

原文English
主出版物標題WWW 2022 - Companion Proceedings of the Web Conference 2022
發行者Association for Computing Machinery, Inc
頁面232-235
頁數4
ISBN(電子)9781450391306
DOIs
出版狀態Published - 2022 4月 25
事件31st ACM Web Conference, WWW 2022 - Virtual, Online, France
持續時間: 2022 4月 25 → …

出版系列

名字WWW 2022 - Companion Proceedings of the Web Conference 2022

Conference

Conference31st ACM Web Conference, WWW 2022
國家/地區France
城市Virtual, Online
期間22-04-25 → …

All Science Journal Classification (ASJC) codes

  • 電腦網路與通信
  • 軟體

指紋

深入研究「Unsupervised Post-Time Fake Social Message Detection with Recommendation-aware Representation Learning」主題。共同形成了獨特的指紋。

引用此