TY - JOUR
T1 - Upregulation of Glutamatergic Receptors in Hippocampus and Locomotor Hyperactivity in Aged Spontaneous Hypertensive Rat
AU - Yen, Patrick Szu Ying
AU - Liu, Yen Chin
AU - Chu, Chun Hsien
AU - Chen, Shiou Lan
N1 - Funding Information:
This study was supported by grant M109108 (to SLC) from Kaohsiung Medical University and the MOST Grants #105–2628-B-037–003-MY3 (to SLC) and (to) from the Taiwan Ministry of Science and Technology.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/10
Y1 - 2022/10
N2 - Epidemiologic studies have indicated that chronic hypertension may facilitate the progression of abnormal behavior, such as emotional irritability, hyperactivity, and attention impairment. However, the mechanism of how chronic hypertension affects the brain and neuronal function remains unclear. In this study, 58-week-old male spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) control rats were used. Their locomotor activity and neuronal function were assessed by the open field test, novel object, and Y maze recognition test. Moreover brain tissues were analyzed. We found that the aged SHR exhibited significant locomotor hyperactivity when compared to the WKY rats. However, there was no significant difference in novel object and novel arm recognition between aged SHR and the WKY rats. In the analysis of synaptic membrane protein, the expression of glutamatergic receptors, such as the N-methyl-D-aspartate (NMDA) receptor receptors subunits 2B (GluN2B) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 1 (GluA1) in the hippocampus of SHR were significantly higher than those of WKY rats. In addition, in the synaptic membrane of SHR's hippocampus and medial prefrontal cortex (mPFC), a down-regulation of astrocytes was found, though the excitatory amino acid transporter 2 (EAAT2) remained constant. Moreover, a down-regulation of microglia in the hippocampus and mPFC was seen in the SHR brain. Long-term exposure to high blood pressure causes upregulation of glutamate receptors. The upregulation of glutamatergic receptors in hippocampus may contribute to the hyper-locomotor activity of aged rodents and may as a therapeutic target in hypertension-induced irritability and hyperactivity.
AB - Epidemiologic studies have indicated that chronic hypertension may facilitate the progression of abnormal behavior, such as emotional irritability, hyperactivity, and attention impairment. However, the mechanism of how chronic hypertension affects the brain and neuronal function remains unclear. In this study, 58-week-old male spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) control rats were used. Their locomotor activity and neuronal function were assessed by the open field test, novel object, and Y maze recognition test. Moreover brain tissues were analyzed. We found that the aged SHR exhibited significant locomotor hyperactivity when compared to the WKY rats. However, there was no significant difference in novel object and novel arm recognition between aged SHR and the WKY rats. In the analysis of synaptic membrane protein, the expression of glutamatergic receptors, such as the N-methyl-D-aspartate (NMDA) receptor receptors subunits 2B (GluN2B) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 1 (GluA1) in the hippocampus of SHR were significantly higher than those of WKY rats. In addition, in the synaptic membrane of SHR's hippocampus and medial prefrontal cortex (mPFC), a down-regulation of astrocytes was found, though the excitatory amino acid transporter 2 (EAAT2) remained constant. Moreover, a down-regulation of microglia in the hippocampus and mPFC was seen in the SHR brain. Long-term exposure to high blood pressure causes upregulation of glutamate receptors. The upregulation of glutamatergic receptors in hippocampus may contribute to the hyper-locomotor activity of aged rodents and may as a therapeutic target in hypertension-induced irritability and hyperactivity.
UR - http://www.scopus.com/inward/record.url?scp=85105432681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105432681&partnerID=8YFLogxK
U2 - 10.1007/s10571-021-01094-3
DO - 10.1007/s10571-021-01094-3
M3 - Article
C2 - 33954807
AN - SCOPUS:85105432681
SN - 0272-4340
VL - 42
SP - 2205
EP - 2217
JO - Cellular and Molecular Neurobiology
JF - Cellular and Molecular Neurobiology
IS - 7
ER -