TY - JOUR
T1 - Validation of a Deep Learning-based Automatic Detection Algorithm for Measurement of Endotracheal Tube-to-Carina Distance on Chest Radiographs
AU - Huang, Minhsin
AU - Chen, Chi Yeh
AU - Horng, Ming Huwi
AU - Li, Chung I.
AU - Hsu, I. Lin
AU - Su, Che Min
AU - Sun, Yung Nien
AU - Lai, Chao Han
N1 - Funding Information:
Support for article research was provided from the Ministry of Science and Technology, Executive Yuan, Taiwan (MOST 109-2634-F-006-023) and from National Cheng Kung University Hospital, Tainan, Taiwan (NCKUH-10901003).
Funding Information:
Dr. Lai received support for article research from the Ministry of Science and Technology, Executive Yuan, Taiwan (MOST 109-2634-F-006-023) and from National Cheng Kung University Hospital, Tainan, Taiwan (NCKUH-10901003). The other authors declare no competing interests.
Publisher Copyright:
© 2022 Lippincott Williams and Wilkins. All rights reserved.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - Background: Improper endotracheal tube (ETT) positioning is frequently observed and potentially hazardous in the intensive care unit. The authors developed a deep learning-based automatic detection algorithm detecting the ETT tip and carina on portable supine chest radiographs to measure the ETT-carina distance. This study investigated the hypothesis that the algorithm might be more accurate than frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement. Methods: A deep learning-based automatic detection algorithm was developed using 1,842 portable supine chest radiographs of 1,842 adult intubated patients, where two board-certified intensivists worked together to annotate the distal ETT end and tracheal bifurcation. The performance of the deep learning-based algorithm was assessed in 4-fold cross-validation (1,842 radiographs), external validation (216 radiographs), and an observer performance test (462 radiographs) involving 11 critical care clinicians. The performance metrics included the errors from the ground truth in ETT tip detection, carina detection, and ETT-carina distance measurement. Results: During 4-fold cross-validation and external validation, the median errors (interquartile range) of the algorithm in ETT-carina distance measurement were 3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer performance test, the median errors (interquartile range) of the algorithm were 2.6 (1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, carina detection, and ETT-carina distance measurement, significantly superior to that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outperformed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT tip detection, carina detection, and ETT-carina distance measurement, respectively. No clinician was significantly more accurate than the algorithm in any comparison. Conclusions: A deep learning-based algorithm can match or even outperform frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.
AB - Background: Improper endotracheal tube (ETT) positioning is frequently observed and potentially hazardous in the intensive care unit. The authors developed a deep learning-based automatic detection algorithm detecting the ETT tip and carina on portable supine chest radiographs to measure the ETT-carina distance. This study investigated the hypothesis that the algorithm might be more accurate than frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement. Methods: A deep learning-based automatic detection algorithm was developed using 1,842 portable supine chest radiographs of 1,842 adult intubated patients, where two board-certified intensivists worked together to annotate the distal ETT end and tracheal bifurcation. The performance of the deep learning-based algorithm was assessed in 4-fold cross-validation (1,842 radiographs), external validation (216 radiographs), and an observer performance test (462 radiographs) involving 11 critical care clinicians. The performance metrics included the errors from the ground truth in ETT tip detection, carina detection, and ETT-carina distance measurement. Results: During 4-fold cross-validation and external validation, the median errors (interquartile range) of the algorithm in ETT-carina distance measurement were 3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer performance test, the median errors (interquartile range) of the algorithm were 2.6 (1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, carina detection, and ETT-carina distance measurement, significantly superior to that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outperformed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT tip detection, carina detection, and ETT-carina distance measurement, respectively. No clinician was significantly more accurate than the algorithm in any comparison. Conclusions: A deep learning-based algorithm can match or even outperform frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.
UR - http://www.scopus.com/inward/record.url?scp=85142119200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142119200&partnerID=8YFLogxK
U2 - 10.1097/ALN.0000000000004378
DO - 10.1097/ALN.0000000000004378
M3 - Article
C2 - 36129686
AN - SCOPUS:85142119200
SN - 0003-3022
VL - 137
SP - 704
EP - 715
JO - Anesthesiology
JF - Anesthesiology
IS - 6
ER -