TY - JOUR
T1 - WWOX Controls Cell Survival, Immune Response and Disease Progression by pY33 to pS14 Transition to Alternate Signaling Partners
AU - Liu, Tsung Yun
AU - Nagarajan, Ganesan
AU - Chiang, Ming Fu
AU - Huang, Shenq Shyang
AU - Lin, Tzu Chia
AU - Chen, Yu An
AU - Sze, Chun I.
AU - Chang, Nan Shan
N1 - Funding Information:
Funding: This research was supported to NS Chang by the Ministry of Science and Technology, Taiwan (MOST 108-2320-B-006-020, 109-2320-B-006-058, and 110-2320-B-006-056), the National Health Research Institute (NHRI-EX107-10734NI) and the Department of Defense, USA (DAMD17-03-1-0736 and W81XWH-08-1-0682).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer’s disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aβ42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.
AB - Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer’s disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aβ42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.
UR - http://www.scopus.com/inward/record.url?scp=85133505019&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133505019&partnerID=8YFLogxK
U2 - 10.3390/cells11142137
DO - 10.3390/cells11142137
M3 - Review article
AN - SCOPUS:85133505019
SN - 2073-4409
VL - 11
JO - Cells
JF - Cells
IS - 14
M1 - 2137
ER -