TY - JOUR
T1 - Y2BaCuO5 addition and its effects on critical currents in large grains of YBa2Cu3O7-δ
T2 - A quantitative microstructural study
AU - Chopra, Manoj
AU - Chan, Siu Wai
AU - Meng, R. L.
AU - Chu, C. W.
N1 - Funding Information:
S. W. C. and M. C. acknowledge the initial support from the Air Force Office of Scientific Research, under Grant AFOSR F49620-92-J-0160 and the continuing support from the National Science Foundation under Grant DMR-93-50464. M. C. thanks Professor D. N. Beshers, Professor S. C. Cargill, and Jack Tsai for their helpful comments.
PY - 1996/7
Y1 - 1996/7
N2 - The addition of Y2BaCuO5 (211) particles to large grain melt textured YBa2Cu3O7-δ (Y123) has significantly improved the critical current density (Jc) of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation of the initial volume percent of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc is observed, corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc is 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also shows a maximum pinning force for an initial 211 addition of 40%. Although the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2-4 T) of the superconducting Y123 matrix was actually improved with an ever increasing 211 addition to at least 50%. Though an increasing addition of 211 is effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix become limited for supercurrent. Hence, a measured 211 volume corresponding to 80% 211 is proved to give the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks are found to decrease with an increasing 211 addition and with a decreasing 211 interparticle spacing. The penetration and surface length of each of these superficial cracks are hence reduced, which leads to a better electrical connectivity in the Y123 matrix.
AB - The addition of Y2BaCuO5 (211) particles to large grain melt textured YBa2Cu3O7-δ (Y123) has significantly improved the critical current density (Jc) of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation of the initial volume percent of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc is observed, corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc is 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also shows a maximum pinning force for an initial 211 addition of 40%. Although the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2-4 T) of the superconducting Y123 matrix was actually improved with an ever increasing 211 addition to at least 50%. Though an increasing addition of 211 is effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix become limited for supercurrent. Hence, a measured 211 volume corresponding to 80% 211 is proved to give the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks are found to decrease with an increasing 211 addition and with a decreasing 211 interparticle spacing. The penetration and surface length of each of these superficial cracks are hence reduced, which leads to a better electrical connectivity in the Y123 matrix.
UR - http://www.scopus.com/inward/record.url?scp=0030191173&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030191173&partnerID=8YFLogxK
U2 - 10.1557/JMR.1996.0203
DO - 10.1557/JMR.1996.0203
M3 - Article
AN - SCOPUS:0030191173
SN - 0884-2914
VL - 11
SP - 1616
EP - 1626
JO - Journal of Materials Research
JF - Journal of Materials Research
IS - 7
ER -